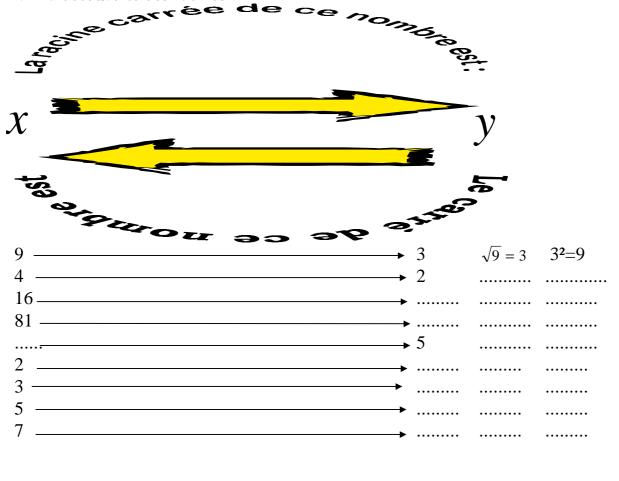
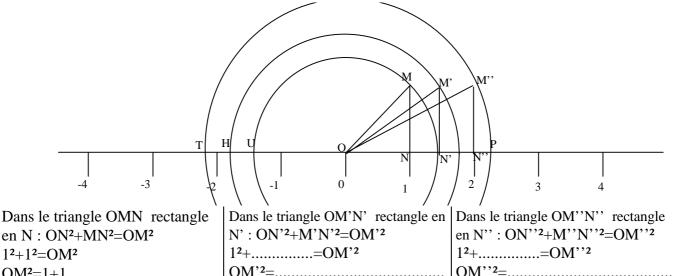
Racines carrées

I. A la découverte des racines :



Mais ces nouveaux nombres ne servent à rien ils n'existent pas dans la nature

Mais si, Regarde la figure ci-dessous et applique-toi s'il te plait



Dans le triangle OMN rectangle en N : $ON^2 + MN^2 = OM^2$ | $OM^2 = 1 + 1$ | $OM^2 = 2$ | $OM^2 = 2$ | $OM^2 = 1 + 1$ | $OM^2 = 2$ | $OM^2 = 1 + 1$ | $OM^2 = 2$ | $OM^2 = 1 + 1$ | $OM^2 = 2$ | $OM^2 = 1 + 1$ | $OM^2 = 2$ | $OM^2 = 1 + 1$ | O

Ces nombres existent et on ne doit pas les remplacer par des valeurs décimales approchées, sauf quand la question est posée dans le problème.

Définition : $\sqrt{2}$ est le nombre dont le carré est 2 De même : \sqrt{a} est le nombre dont le carré est a.

$$\left(\sqrt{a}\right)^2 = a$$

Remarques : il n'existe pas de nombre dont le carré soit (-5) donc la racine carré de (-5) n'existe pas. Il n'existe pas de nombre dont le carré soit *a* lorsque *a* est négatif (en effet un carré est positif)

La racine carrée d'un nombre négatif n'est pas définie.

 \sqrt{a} est un nombre positif par définition

II. Propriétés des racines carrées :

$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$
 ($a \text{ et } b \text{ positifs}$)
Démonstration: $(\sqrt{a} \times \sqrt{b})^2 = (\sqrt{a})^2 \times (\sqrt{b})^2 = ab$ et $(\sqrt{ab})^2 = ab$

Deux nombres ont des carrés égaux lorsqu'ils sont égaux ou opposés. Or les racines sont des nombres positifs donc les deux nombres $\sqrt{a} \times \sqrt{b}$ et \sqrt{ab} sont égaux.

Attention:
$$\frac{\sqrt{a} + \sqrt{b} \neq \sqrt{ab}}{\sqrt{a}} (a \text{ et } b \text{ positifs})$$
Contre exemple: $\sqrt{9+16} = \sqrt{25} = 5$ et $\sqrt{9} + \sqrt{16} = 3+4=7$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} (a \text{ et } b \text{ positifs et } b \text{ non nul})$$

Démonstration :
$$\left(\frac{\sqrt{a}}{\sqrt{b}}\right)^2 = \frac{\left(\sqrt{a}\right)^2}{\left(\sqrt{b}\right)^2} = \frac{a}{b}$$
 et $\left(\sqrt{\frac{a}{b}}\right)^2 = \frac{a}{b}$

Deux nombres ont des carrés égaux lorsqu'ils sont égaux ou opposés. Or les racines sont des nombres positifs donc les deux nombres $\frac{\sqrt{a}}{\sqrt{b}}$ et $\sqrt{\frac{a}{b}}$ sont égaux.

III. Résolution de l'équation $x^2=a$

Exemple:

$$a = 3$$
 $x^2=3$ est équivalent à $x^2=(\sqrt{3})^2$
Cette équation admet deux solutions
 $\sqrt{3}$ et $-\sqrt{3}$

$$a=-3$$
 $x^2=-3$

Lorsque a est négatif impossible car un carré est positif

Généralisation

$$x^2=a$$

Lorsque *a* est positif $x^2 = a$ est équivalent à $x^2 = (\sqrt{a})^2$

Cette équation admet deux solutions \sqrt{a} et $-\sqrt{a}$

Lorsque a est négatif impossible car un carré est positif Cette équation n'admet pas de solutions